

University of Southampton Anechoic Wind Tunnel – Capabilities, Current Work and Future Plans

David Angland and Owen Parnis National Wind Tunnel Facility (NWTF 2023)

Contents

- Capabilities
- Current Work
- Future Plans

Capabilities

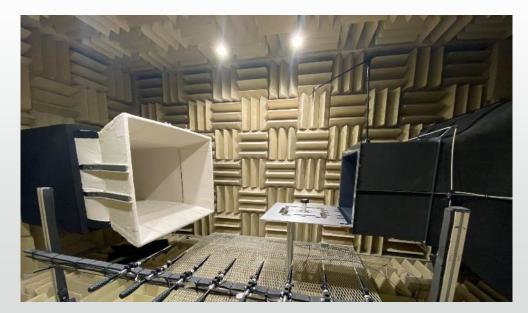
Capabilities

- Closed circuit wind tunnel
- Open test section within anechoic chamber
- Test section 1.0 m \times 0.75 m
- Test velocity ~80 m/s

(M = 0.23)

3 sections of ducted silencers to minimise transmitted noise along the wind tunnel

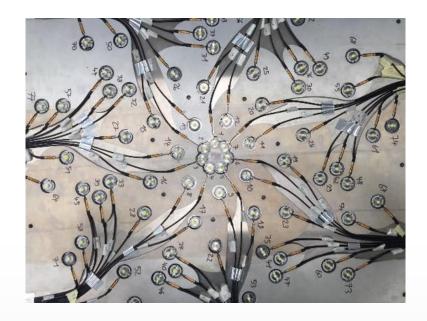
Specification


Parameter	Value
Mach Number	0.23
Test Section Size	1.0 m × 0.75 m
Reynolds Number per metre	$5.4 \times 10^{6}/m$
Dynamic Pressure	3.9 kN/m ²
Contraction Ratio	8:1
Turbulence intensity	0.15% at 78 m/s
Run Time	Continuous
Out of Flow Background Noise	85 dBA*

* The out of flow background noise is measured at 2.3 m from the jet centreline at an angle of 60 deg. at 80 m/s.

Anechoic Chamber

- Chamber wall thickness of 250 mm of reinforced concrete
- Size $8.1 \text{ m} \times 5.1 \text{ m} \times 4.3 \text{ m}$
- The chamber is isolated from the building floor slab via acoustic isolation pads
- Wedges create an anechoic environment to a nominal frequency of 250 Hz
- Acoustic panelling to minimise reflections from wind tunnel steel ducting



Instrumentation

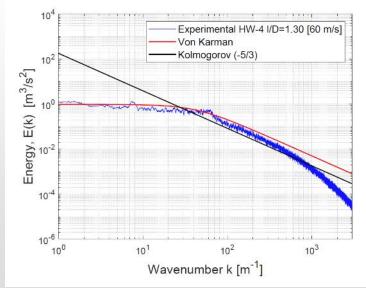
- ATI load cells
- GRAS freefield and flush mounted microphones
- Phased microphone arrays
- Hotwire anemometry
- Kulite pressure transducers
- ZOC pressure scanner
- National Instruments acquisition

Current Work

Examples of Work

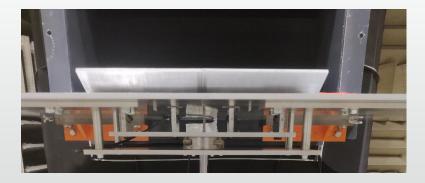
- Facility is used for commercial work, undergraduate and postgraduate research, and industrial and publicly funded research.
- Commercial work
 - Airbus (airframe noise measurements)
 - Metrological anemometers
 - UAV rotors
 - Air-to-air refuelling rigs
 - Motorsport (sidecar motorbike racing)
- Main use is in airframe and aero-engine research.

FLG2 (Innovate UK)


- Perform small-scale experiments using a scale landing gear model to generate an experimental databases to be used for numerical validation
- Interested in quantifying the ability to capture deltas between configurations and not just absolute values
- Fixture of aerodynamic and acoustic data
- Loads, Kulites, farfield noise

ARTEM (EU H2020)

- Investigate and down select various noise reduction technologies for installation noise reduction
- Investigate the use of mesh fairings to reduce landing gear wake flap interaction
- Investigated the effect of porosity and streamwise location
- Farfield microphones and hotwire anemometry



INVENTOR (EU H2020)

- Spoiler noise experiments
- Simple flat plate for numerical validation and fundamental understanding
- Aerodynamic measurements: Loads, on-surface pressures, boundary layer rake profiles, hotwire anemometry
- Acoustic measurements: Farfield microphones and phased microphone array

Future Plans

Future Plans

- Particle Image Velocimetry
 - LaVision three component PIV system
 - Allow further flowfield measurements
- Kevlar test section
 - Existing collector a balance between reducing pressure loss and minimising noise
 - For lifting bodies the jet is deflected significantly
 - Kevlar test section will allow more lifting geometries to be measured

Enquiries:

David Angland Faculty of Engineering and Physical Sciences University of Southampton Southampton SO16 7QF UK Email: <u>d.angland@soton.ac.uk</u> Phone: +44(0) 2380 594987