Leading-edge flow separation control using DBD plasma: Effect of the Reynolds number

Kwing-So Choi, Yaxing Wang, Mahmud Muhammad University of Nottingham

Richard Green, University of Glasgow

Jonathan Cooper University of Bristol

This study was funded by the EU CleanSky 2 Joint Undertaking (JU) under Grant Agreement No. 864290.

To study innovative flow control devices for size reduction of the empennage of large passenger aircraft.

Wind tunnels and test models

Mean aerodynamic chord = 0.982 m, Span = 1.6 m Sweep angle = 27.2° , Taper ratio = 0.46

Glasgow tunnel: 2.7 x 2.1 x 5.4 m

1/4 model

Nottingham tunnel: 0.9 x 0.9 x 1.5 m

Plasma actuators

LES results of the baseline

C_p distributions at the rudder angle $\delta=30^\circ$

LES results of the baseline

C_f distributions at the rudder angle $\delta=30^\circ$

Effect of plasma position

Position of the plasma actuators is critical for flow separation control.

For the leading-edge flow separation control, the plasma actuators must be positioned exactly at the leading edge.

Effect of plasma position

2.5mm off the Leading edge

Effect of plasma position

Exactly on the Leading edge

Plasma covers 30% span along the leading edge

Nottingham wind tunnel results

 $\beta = 20^{\circ}$

U = 7.5 m/s

 $U\,=\,10\,\,m/s$

β

U = 15 m/s

U = 20 m/s

U = 30 m/s

 $\mathbf{d} = 30^{\circ}$

U = 30 m/s

 $\mathbf{d} = 30^{\circ}$

Conclusions

□ Important parameter for the flow separation control is the velocity ratio between the plasma induced velocity and the freestream.

□ The plasma actuators must be placed at the leading edge to control the LE flow separation.

□ There seems to be some effect of leadingedge curvature as well as the plasma discharge length.