

Experimental sensitivity analysis of the aerodynamics of a simplified ground vehicle to the body clearance, yaw and pitch

Olivier Cadot – University of Liverpool (UK) Yajun Fan (PhD) - University of Liverpool (UK) Vladimir Parezanovic - Khalifa University of Science and Technology, Abu Dhabi, (UAE)

Outline

- Introduction
- Experimental set-up
 - Parametric study in yaw, pitch and clearance.
- Results
 - Wake orientation sensitivity to the attitude
 - Sensitivity of the aerodynamic coefficients to the attitude
- Conclusion

Introduction

• The industrial context

EU (Convention) - Share of transport greenhouse gas emissions

Source: Climate Change Committee (2021). Progress in reducing emissions 2021; Report to Parliament

Introduction

• The industrial context

 $C_b = 0.139$

Bonnavion et al. 2017, 2019 JWEIA.

 $C_b = 0.176$

Crosswind 15 km/h

Urquhart PhD 2021 « Vehicle wakes in side wind »

Experimental Set-up

- Flat backed Ahmed body
- Fine adjustment in pitch α , yaw β and clearance C
- Force balance and local pressure measurements

Parametric studies

- Parameters space : $(\beta, C, \alpha_o = 0^o)$
 - $-15.5^{\circ} < \beta < +2^{\circ}$ by steps of $\delta\beta = 0.5^{\circ}$ and 0.01 < C < 0.17 by steps of $\delta C = 2.5 \ 10^{-3}$.
 - 2400 configurations (7 hours)
- Parameters space : $(\beta, C_o = 0.1, \alpha)$
 - $-15.5^{\circ} < \beta < +2^{\circ}$ by steps of $\delta\beta = 0.5^{\circ}$ and $-2.3^{\circ} < \alpha < +2.3^{\circ}$ by steps of $\delta\alpha = 0.1^{\circ}$.
 - 1692 configurations (5 hours)
- For each configuration : 10 s duration acquisition at 1Khz of the 6 aerodynamic components of the force balance and the 64 pressure taps.
- Strain gages drift (force balance) : 200 s is required for the drift amplitude to exceed the measurements noise.
- Parametric study procedure :
 - Flow set at a dynamic pressure of q = 150 Pa ($U_{\infty} = 15.8$ m/s, Re=200 000).
 - Configurations explored following a minimised path.
 - Every 200 s, the model moves to a reference position (chosen for its weak unsteadyness: $\beta_{ref} = -5^o$, $C_{ref} = 0.1$, $\alpha_{ref} = 0^o$) and then the mean measurements obtained from a 20 s acquisition are substracted to all the following measurements.
- Post processing
 - The parametric procedure is reproduced in exactly the same manner with no wind to substract the non-aerodynamics loading such as gravity loads and cables deformation connected between the (moving) body and the fixed acquisition station.

Wake orientation sensitivity to the attitude

Base pressure gradient orientation

• Parameters space : $(\beta, C_o = 0.1, \alpha)$

 G_z

< 0

Clear changes of gradient orientations

Base pressure gradient orientation

• Parameters space : $(\beta, C_o = 0.1, \alpha)$

 G_z

< 0

Base pressure gradient fluctuation

• Parameters space : $(\beta, C_o = 0.1, \alpha)$

 G_{z}

 $\beta < 0$

Unsteady transitions

Grandemange, Gholke, Cadot PRE (2012) "Reflectional symmetry breaking of the separated flow over three-dimensional bluff bodies"

SUV car

Closed $\alpha = 19^{\circ} V_U$ U_{∞} Wake ring Slots closed vortex, $C_{PTi} = 1.15$ V_L Film thickness, $h/1 \times 10^{-6} m$ Additional lateral 0 1 2 3 5 vortex, $C_{PTi} = 1.15$ Ζ Open *α* =-7° $y \rightarrow x$ V_U Slots open V_L

Gaylard. A. P. (2019) Vehicle Surface Contamination, Unsteady Flow and Aerodynamic Drag (EngD Thesis), Warwick University, UK.

Sensitivity of the aerodynamic coefficients to the attitude

Conclusion

- Parametric studies show the high sensitivity of the wake orientation to the attitude of a simplified ground vehicle (i.e. various flow condition : mass loading, crosswind)
- This sensititivity is due to the presence of the steady wake instability, reminiscent of a low Reynolds number bifurcation. It induces lift, side force and drag variation.
- PIV investigation to understand wake orientation with attitude
- Upcoming work : drag reduction in variable attitudes with adaptive spoilers, to test different control strategies.

Thank you

Symmetry breaking

• Simplified geometry

ENSTA Re=250 000

Grandemange et al. 2013 PoF