

1

Non-neutral flows: simulating the full range of atmospheric conditions in the EnFlo Environmental Wind Tunnel

Dr. Matteo Carpentieri (EnFlo lab –University of Surrey)

NWTF Conference – Birmingham 25/5/2023

Outline

Non-neutral flows: simulating the full range of atmospheric conditions in the EnFlo Environmental Wind Tunnel

- Background & Methodology
 - Non-neutral flows
 - The EnFlo environmental wind tunnel
 - Instrumentation
 - Generating a SBL
 - Generating a CBL
- Project results
 - StratEnFlo: Pollution dispersion in urban areas
 - Fundamental research
 - Urban heterogeneity (ASSURE)
 - Wind power aerodynamics

Stratification in urban areas

Wood et al. (2010), "Turbulent Flow at 190 m Height Above London During 2006–2008: A Climatology and the Applicability of Similarity Theory", BLM 137: 77-96

 \sim Virtual potential temperature Θ_v

Lack of experimental data:

- Specifically-designed facilities?
- Time-consuming methodologies
- No established methods for SBL
 Artificial thickening not common

View of London from BT Tower - Credits: Colin (Wikipedia user) CC BY-SA 3.0

The EnFlo environmental wind tunnel

After the recent upgrade

Open-return meteorological wind tunnel

Test section dimensions (m): 20 x 3.5 x 1.5

Air speed range: 0.5 - 5 m/s

Temperature range: 10 – 110 °C

Max heating power: 800 kW

Wind tunnel setup

LDA Mirror (UW setup only)

Tuesday 7 March 2023

Generating non-neutral boundary layers

Stable boundary layer

Parameters investigated:

- Floor temperature vs inlet max temperature
- Length of uncooled floor
- Imposed temperature profile

Bulk Richardson number: $Ri_{b} = \frac{g(\Theta_{\delta} - \Theta_{0})\delta}{\Theta_{0}U_{\delta}^{2}}$

Riδ	0	0.14	0.21	0.33	0.21 (LR)
$U_{REF} (m/s)$	1.25	1.50	1.25	1.00	1.25
$\Delta \Theta_{MAX}$ (°C)	0	16	16	16	16
u_*/U_{REF}	0.065	0.053	0.047	0.040	0.042
$z_0 (mm)$	2.2	2.4	2.3	2.4	0.6
θ_{*} (K)	-	0.35	0.34	0.30	0.30
δ/L	0	0.64	1.13	2.18	1.27

Generating non-neutral boundary layers

Convective boundary layer

Parameters investigated:

- Floor temperature vs inlet max temperature
- Layout of heating panels
- Imposed temperature profile
- Capping temperature inversion layer

	N	HR2	HR1(U)
$U_{REF} (m/s)$	2.0	1.25	1.0
$\Delta \Theta_{MAX}$ (°C)	0	-23	-36
δ (m)	1.0	1.2	1.3
u_*/U_{REF}	0.065	0.084	0.100
$z_0 (mm)$	2.0	1.8	2.0
θ_{*} (K)	-	-0.78	-1.4
$ ilde{ heta}_*$ (K)	-	0.56	0.79
u_*/w_*	-	0.72	0.56
δ/L	0	-1.1	-2.2
Ri _o	0	-0.5	-1.5
$\operatorname{Re}_{\delta}(x10^4)$	13.3	8.7	6.9

UNIVERSITY OF

Effects of non-neutral stratification

Local stratification: test cases

H = 165 mm Canyon aspect ratio = 1 [H = W]

2x5 local heating/cooling configurations

Local stratification: results

Turbulent dispersion in non-neutral BLs

Fundamental research

Extensive work in neutral conditions:

- Fackrell & Robins (1982), "Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer", JFM 117:1-26
- Nironi et al. (2015), "Dispersion of a passive scalar fluctuating plume in a turbulent boundary layer. Part I: Velocity and concentration measurements", BLM 156(3):415-446
- Marro et al. (2015), "Dispersion of a passive scalar fluctuating plume in a turbulent boundary layer. Part II: Analytical Modelling" BLM 156(3): 447-469

Roughness step-change in NBL&SBL

Fundamental research (ASSURE project)

Quantity	Case 1	Case 2	Case 3	Case 4
$Re_{\delta}(\times 10^4)$	4.5	4.5	3.0	2.9
Rib	0	0.13	0	0.27
Re_{τ}	2000	1600	1500	860
$U_{ref}(m/s)$	1.5	1.5	1.0	1.0
$\delta_0(m)$	0.52	0.52	0.53	0.50
$\Delta \Theta(\mathbf{K})$	0	16	0	16
u_{*1}/U_{ref}	0.045	0.036	0.049	0.030
u_{*2}/U_{ref}	0.064	0.049	0.067	0.047
,,				

Wind power aerodynamics

14

Wind power aerodynamics

Offshore and onshore wind farms

Stably stratified ABLs hinder the wake recovery in both near and far field

Stable wakes are more persistent

Stability effects are even larger in the turbulence, where the TKE decay is strongly hindered by the thermal stability

Contacts

- m.carpentieri@surrey.ac.uk
- <u>https://www.surrey.ac.uk/people/matteo-carpentieri</u>
- Twitter: @EnFlo_lab

NATIONAL WIND TUNNEL FACILITY

ATMOSPHERIC MEASUREMENTS