

Surface Pressure Measurements on a Free-Flying Cone at Mach 7 using Pressure Sensitive Paint

Christopher Wheeler¹, Andrew Hysop¹, Joao Vieira¹, Laurent Le Page¹, Mark K. Quinn², Nafiz H.K. Chowdhury¹ and Luke J. Doherty¹

¹ Oxford Thermofluids Institute, University of Oxford ² Department of Mechanical, Aerospace & Civil Engineering, University of Manchester

Osney Thermofluids Laboratory

Scope:

- Introduction
- In-house Binary Formulation
- High Density Tunnel (HDT)
 - Experimental Setup
 - Processing
 - Results
- Summary

Introduction:

- Measuring aerodynamic phenomena experimentally is required to validate computational models and understand efficiency of flight.
- Realistic force measurement in short-duration hypersonic test facilities is non-trivial and can affect results.
- Free-flight can provide a more accurate testing regime.
- PSP offers a non-intrusive, high-quality method of obtaining surface pressure measurements.
- Aim: Assess feasibility of using a cost-effective, binary-PSP on a free-flying model in the University of Oxford High Density Tunnel (HDT)

In-house Binary Formulation:

Based off Recipe 3 of Fast PSP (PC-PSP) from PRESSURE AND TEMPERATURE SENSITIVE PAINTS, Liu and Sullivan, 2021

Data from: [1], [2] and [3]

Components:

Pressure Luminophore:	RuDPP ₃
Reference Luminophore:	Fluorescein
Polymer Binder:	RTV-118 Silicone
Ceramic Binder:	TiO ₂ , 32 nm nanoparticles
Solvents:	Toluene, DCM

High Density Tunnel (HDT) Experimental Setup:

HDT: Heated Ludwig tube mode.

- 17.4 m long
- 6" barrel
- 350 mm exit diameter (Mach 7 nozzle)

	Parameter	Units	Value	Uncertainty
Measured	p_0	kPa	3375	±7
Accumod	<i>p_p/p</i> 0	-	0.0149	±0.0002
Assumed	T_{O}	К	555	±15
	М	-	7.05	±0.02
Colculated	p	Ра	780	±16
Eroostroom	Т	К	51	±1.4
Treestream	<i>U</i> _X	m/s	1006	±14
	Reu	10 ⁶ /m	16.5	±0.8

Test Flow Condition

High Density Tunnel (HDT) - Experimental Setup:

7° half angle cone

- A. Aluminium nose
- B. Electromagnetic alignment marker
- C. Optical Tracking Dots
- D. Steel rear with 3D printed insert
- E. Steel cone half
- F. 3D printed DAQ mount
- G. Tungsten ballast
- H. DAQ

Hyslop *et al.* (2022) doi:10.2514/6. 2022-1324

High Density Tunnel (HDT) - Experimental Setup:

High Density Tunnel (HDT) - Experimental Setup:

High Density Tunnel (HDT) - Processing:

Detected Circle Centre Points Calculated Centre of Mass Facility Nozzle Centreline Core-flow Extent

High Density Tunnel (HDT) - Processing:

High Density Tunnel (HDT) - Results:

Cone surface pressure during steady test flow period – mid core flow

9 0 0 12 Construction 12 Const AA-PSP PC-PSP 15 PSP Surface pressure (kPa) CFD, 0° AoA Panel, 0° AoA Panel, 1.4° AoA, windward 10 Panel, 1.4° AoA, leeward 5 0 0.1 0.2 0.4 0.5 0.6 0.8 0.9 0.3 0.7 0 1 Normalised distance, (x/L)

Comparison of PSP and Numerical pressure distributions along cone mid-line

Summary:

- Cost-effective Binary PSP method was developed for the Oxford HDT, that was able to resolve intensity maps on a free-flying model.
- Pressure data demonstrated significant non-uniformities.
- Overall the method shows promise as a valid measuring technique.

Further Work:

- Re-analyse post processing technique
- Analyse further Tunnel Runs possibly static tests
- Investigate effect of desaturating the cameras

References:

- [1]: L. Devices, Pt-120-te product datasheet (2019). URL https://download.luminus.com/datasheets/ Luminus_PT-120_Datasheet.pdf
- [2]: A. Bioquest, Spectrum [fluorescein] (2021). URL https://www.aatbio.com/ fluorescence-excitation-emission-spectrum-graph-viewer/Fluorescein
- [3]: M. K. Quinn, L. Yang, K. Kontis, Pressure-sensitive paint: Effect of substrate, Sensors 11 (12) (2011) 11649–11663. doi:10.3390/s111211649.

Scope:

- Introduction
- In-house Binary Formulation
- High Density Tunnel (HDT)
 - Experimental Setup
 - Processing
 - Results
- Summary

Questions?

Gregory et al. (2014) doi:10.1146/annurev-fluid-010313-141304

$$\frac{I_{\text{ref}}}{I} = A(T) + B(T)\frac{p}{p_{\text{ref}}}$$

600

650

700

550

Wavelength (nm)

RuDPP₃³

Benchtop Testing:

LED

Vacuum pump (Edwards E2M1.5)

Hand pump (Additel 914)

CCD Camera (Bigeye G-283B Mono)

Filter

Filter Flipper (Thorlabs MFF102)

Benchtop Testing:

Benchtop Testing - Results

High Density Tunnel (HDT) - Processing:

PC-PSP

$$\frac{\overline{I_{ref}}}{\overline{I}} = \frac{\frac{I_{p,ref}}{I_p}}{\frac{I_{r,ref}}{I_r}} = \frac{K_1 - K_2 p}{K_3 - K_4 p}$$

AA-PSP

High Density Tunnel (HDT) - Results:

Pixel-by-pixel calibration

"Single-Curve" calibration

Benchtop Testing:

Benchtop Testing:

HDT Experimental Setup

HDT Experimental Setup

Solution:		(1)		(2)			Luminophore Concentration				
No:	Type:	RuDPP ₃	Fluorescein	DCM	RTV-118	TiO ₂	Toluene	Ru:F	[Fluores]	[RuDpp₃]	[Ru + F]
		(X mg)	(Y mg)	(ml)	(mg)	(g)	(ml)	(1:x)	[mM]	[mM]	[mM]
j (cone)	PC-PSP	37.41	15.95	24	1200	6.8	56	1.5	0.6	0.4	1.0
m (tip)	AA-PSP	7.02	3.99	30	N/A	N/A	N/A	1.3	0.4	0.2	0.7

HDT Experimental Setup

High Density Tunnel (HDT) - Post-processing:

In-situ Calibration

p = 2.965 kPa,Reference: p = 2 kPa

Free-flying Tunnel Run

t = 3 ms, *Reference: p* = 2 *kPa*

t = 200 ms, *Reference: p* = 2 *kPa*

PSP Theory (Brief)

$$\frac{I_{\text{ref}}}{I} = \frac{\frac{I_{p,\text{ref}}}{I_p}}{\frac{I_{r,\text{ref}}}{I_r}} = \frac{A_p(T) + B_p(T)\frac{p}{p_{\text{ref}}}}{A_r(T) + B_r(T)\frac{p}{p_{\text{ref}}}} = \frac{A_p(T) + B_p(T)\frac{p}{p_{\text{ref}}}}{A_r(T)} = A'(T) + B'(T)\frac{p}{p_{\text{ref}}}$$

