

Internal Heat Transfer Measurements on Hollow Bodies in Rarefied Flow

Alec Berry¹, Nnaemeka Anyamele¹, Dr Brian Tang¹, Dr Nathan Donaldson², Prof Peter Ireland¹ & <u>Dr Luke J Doherty¹</u>

¹Oxford Thermofluids Institute, Department of Engineering Sciences, University of Oxford

²Fluid Gravity Engineering Ltd

Motivation & Experimental Facility

Motivation

• Need to anchor satellite destructive entry calculations with highquality experimental data

Aim

- Provide heat transfer data for hollow geometries in the hypersonic rarefied slip and transition regimes
- Extend experimental capability to thin-shells and multiple cameras

- Continuous facility; 3-stage vacuum pump
- Test gas: dry air at w = 25 SLPM
- Contoured nozzle; exit diameter 108 mm

*see Ref [2] and poster for details

Property	Unit	Value
Nozzle supply pressure	Ра	2705
Pitot Pressure	Ра	110
Total temperature	К	363
Knudsen number	-	0.02
Mach number	-	5.5

NWIF 🚬

OXFORD

Experimental Setup

- Thermochromic liquid crystals (LX)
 - Pressure invariant
 - Relatively simple experimental set up but complex analysis
- Cameras
 - 2 x Ximea 3.1 Mpix (2064 x 1544)
- LEDs (x4)
- Alignment
 - Difficult to avoid glare

Diameter = 15 mm

A – camera; B – optical filter; C – LED; D – Flow Shield; E – Nozzle; F - Model

Results: Raw Video

LX transition temperatures = 30°C, 35°C, 40°C

(a) AR05_DR05

(d) AR10_DR08

(g) HS_Open

(h) HS_Closed

(i) AR05_DR05_AOA45

(f) CS_Narrow

Results: Processing

- Assumes a step change in flow temperature
- Surface temperature transiently increases to eventually match the (local) adiabatic wall temperature
- In-house code (3DHTCS) coordinates COMSOL finite-element transient heating simulation:
 - Developed by Donaldson [3,4] for 3D geometries based on work of Ryley [5], Ireland [6] and Schultz and Jones [7]
 - Iterative, pixel-by-pixel analysis → groups of pixels are mapped onto FEA model
 - Extended in this work to thin-shells and multiple-cameras

MATLAB based user interface

- \rightarrow Don't need to assume semi-infinite 1D conduction
- ightarrow Enabling technique for complex geometries

Results: Cylinder

x=0

Aspect (length) ratio = 0.5, diameter ratio = 0.8

- HTC vs Normalised arc length for Test Case 2 100 Edge Edge 90 80 70 $h_{conv'}$ (W/m²K) 60 50 Coordinate system. Normalising value Rn = half thickness. 40 30 HTC, 20 10 0 -10 -10 -8 -2 0 10 -6 Normalised arc length, x/Rn
- (A) Numerical anomalies (vibrations, glare) → peak not detected → need further improvements to setup
- (B) Discontinuities \rightarrow individual peaks not resolved \rightarrow need higher framerates or larger Δ between LX
- Internal surface has higher HTC than external surface
- Front face HTC is higher than prior measurements for solid cylinder (under same flow condition). See Ref [].

References

- 1. ESA Space Debris Office, (2022), "ESA's Annual Space Environment Report", Issue 6.0, Reference GEN-DP-LOG-00288-OPS-SD
- Donaldson, N.L., Doherty, L.J., Ivison, W., Wilson, C.F., McGilvray, M., Ireland, P.T. (2019), "Refurbishment and Characterisation of the Oxford Low Density Hypersonic Wind Tunnel", *Int'l Conference on Flight Vehicles Aerothermodynamics and Re-entry Missions & Engineering (FAR)*, url: <u>https://ora.ox.ac.uk/objects/uuid:eb4c863f-b92e-4a78-b8c6-f1e9c53df6ca</u>
- 3. Donaldson, N.L., "Hypersonic Modelling and Testing of Space Debris During Planetary Entry," Ph.D. dissertation, University of Oxford, 2019.
- 4. Donaldson, N.L., Doherty, L.J., Ireland, P.T., Merrifield, J. (2021), "Measurements of Heat Transfer on Hemispheres at Rarefied Flow Conditions using Liquid Crystals", 8th European Conference on Space Debris, url: https://conference.sdo.esoc.esa.int/proceedings/sdc8/paper/275
- 5. Ryley, J., "Turbine Blade Mid-Chord Internal Cooling," Ph.D. dissertation, University of Oxford, 2014.
- 6. Ireland, P.T. and Jones, T.V., "Liquid crystal measurements of heat transfer and surface shear stress," *Measurement Science and Technology*, vol. 11, no. 7, Jan. 2000.
- 7. Schultz, D.L. and Jones, T.V., (1973), "Heat-Transfer Measurements in Short-Duration Hypersonic Facilities," AGARDograph No. 165, NATO.