

Mapping the effects of ozone pollution and mixing on floral odour plumes and their impact on plant-pollinator interactions

Alan Robins
University of Surrey

Mapping the effects of ozone pollution and mixing on floral odour plumes and their impact on plant-pollinator interactions

Alan Robins, Paul Hayden, University of Surrey Robbie Girling, Christain Pfrang, Dalila Touhami, University of Reading Ben Langford, Eiko Nemitz, Neil Mullinger, CEH, Edinburgh Michael Birkett, Rothamsted Research

DOMINO

NERC funded project 2017 to 2020 led by the University of Reading and CEH Edinburgh.

Oxidising air pollution degrades important VOC plumes → disrupts chemical communication between plants and insects.

(VOC: Volatile Organic Compound)

Concentration fluctuations in a plume

Signal from a small, elevated source in a turbulent boundary layer

- → highly skewed
- → very large deviations from the mean
- → intermittent (periods of zero concentration).

Experiment design

The reaction with ozone as the oxidant:

$$\frac{\P[VOC]}{\P t} = -k \left([O_3][VOC] \right)$$

$$\frac{1}{T} = -\frac{1}{[VOC]} \frac{\partial [VOC]}{\partial t} = k[O_3]$$

T is the time scale, *k* the reaction rate.

Calculations using rate constants from literature showed practical options with ozone concentrations ~ 100ppb or more.

Top three VOCs: α -terpinene, β -caryophyllene, α -humulene.

EnFlo software controls all aspects of operation of the tunnel and its instrumentation.

Added to this:

PTR-QiTOF

Laboratory as a whole Ozone & VOC emissions Ozone sensors Mass spectrometer

Health and safety → the operating regime

Ozone standards

- Air quality \rightarrow 60 ppb
- Workplace → 200 ppb

Strategy

- → demonstrate online control of ventilation in the EnFlo laboratory

 Time scales for natural ventilation ~ 1hr, forced ~ 10 mins
- → work to air quality standard during working day, say 7am to 8pm
- → operate at workplace limit overnight, with nobody present in the laboratory
- → make full use of unmanned operation

Programme

VOC plumes with and without ozone background; mixtures (4 components)

Source mid boundary layer Vary ozone and VOC levels

Standard 1 m boundary layer with $U_{ref} \sim 0.7 \text{ ms}^{-1}$; $\sim 20 \text{ s flight time.}$

Map plumes in → 35 measurements per run, averaging time ~ 10 minutes per point.

Background subtracted and concentrations adjusted to compensate for changes in VOC source strength.

Data normalised to 1 at reference point, x=500 mm, y=0, $z=z_s$.

Example - normalised concentrations, α -terpinene experiments

Mixing in a turbulent flow

Expect apparent reaction rate to depart from standard values due to incomplete mixing/turbulence effects.

$$\frac{\P[VOC]}{\P_t} = -k\left([O_3][VOC] + [O_3'VOC']\right)$$

→ second term generally negative.

Rate equation with effective rate constant written as:

$$\frac{\P[VOC]}{\P_t} = -k_{eff} \left([O_3][VOC] \right)$$

Conclusions from the experiments

... conclusions were mixed ...

Cases of slower decay -
$$k_{eff} < k$$

Cases of faster decay - $k_{eff} > k$

$$\frac{1}{T} = k[O_3]$$

Plumes decayed much faster at the edges; reaction rates slower in the centre.

Analysis of correlation between concentrations of α -terpinene and ozone revealed the effective rate constant reduced by up to 10% in first 2 m following release.

Ozone also found to increase plume intermittency and decrease odour filament width, two properties used by insects for navigation.

What happened after that?

Working with bees ...

- Honeybees trained to learn a four VOC blend as released in the wind tunnel.
- When presented with odour blend representative of that at the plume centre, 6 m from the source, 52% recognised the odour, falling to 38% at 12 m.
- ... with the more degraded blend from the plume edge, recognition decreased to 32% and 10% at 6 and 12 m respectively.
- Findings showed rapid decline in honeybees' ability to recognise floral odour.
- Likely impact on other odour-mediated behaviours, e.g. mate attraction.

Reference

Langford, B, et al., 2023

Mapping the effects of ozone pollution and mixing on floral odour plumes and their impact on plant-pollinator interactions

Environmental Pollution 336 (2023) 122336

High frequency measurements are feasible using two FFIDs and one tracer.

Exp 1: Tracer in background → measure concentrations in plume

Exp 2: Tracer in source → measure concentrations in plume

Exp 3: Tracer in source & background → measure concentrations in plume

$$2\overline{c_1c_2} = \overline{c_3^2} - \overline{c_1^2} - \overline{c_2^2}$$

Wednesday, 30 April 2025 15

