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Motivation

Gt CO2 emissions 
from aviation

Source: H2ELIOS, 2023

Radical 
Technologies 

Required

Net Zero Target
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Background

Hydrogen-based propulsion is here to stay in sustainable aviation

“FlyZero conducted a detailed assessment of zero-carbon fuels… and identified liquid hydrogen as 

offering the best option for achieving zero-carbon flight for the next generation of aircraft”

FlyZero – Sustainability Report, ATI 2022
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Motivation

Thermal Management and Aerodynamic Structures for these aircraft require further study

“Thermal management will be a key challenge for fuel cells. The placement of this system has a drag

impact, and the weight of the system reduces the overall power density of the fuel cell solution.” 

FlyZero – Technology Roadmaps Report, ATI 2022

ATI, 2022. Design of a novel propeller regional aircraft. ZeroAvia. Retrofit of current regional aircraft. 
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The Challenge of Cooling Fuel Cells
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The Challenge of Cooling Fuel Cells

PW100: Conventional 
Turboprop Engine

ZeroAvia’s Proposed 
Aviation Fuel Cell

ሶ𝑞 = ℎ ∙ ∆𝑇

𝑇𝑀𝐴𝑋 ≈ 800℃ 𝑇𝑀𝐴𝑋 ≈ 100 − 200℃

𝑇∞ ≈ 30℃

∆𝑇 ≈ 770℃ ∆𝑇 ≈ 70 − 170℃

Source: Pratt & Whitney
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The Challenge of Cooling Fuel Cells

PW100: Conventional 
Turboprop Engine

ZeroAvia’s Proposed 
Aviation Fuel Cell

ሶ𝑞 = ℎ ∙ ∆𝑇

∆𝑇 ≈ 770℃ ∆𝑇 ≈ 70 − 170℃

More cooling air is required to cool a Fuel Cell, 
owing to reduced temperature gradients

Source: Pratt & Whitney
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Cooling in Hydrogen-Electric Aircraft

Conventional 
Turboprop Nacelle

Fuel Cell 
Nacelle

Universal Hydrogen’s 
Fuel Cell Testbed
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Cooling in Hydrogen-Electric Aircraft

~290% in frontal area 
increase

Conventional 
Turboprop Nacelle

Fuel Cell 
Nacelle

Source: Universal Hydrogen
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Research Questions

What are the key flow phenomena inside an enlarged 

cooling duct immersed in propeller wake? 
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Wakes from upstream rotor stages in turbomachines increase time-averaged laminar heat 

transfer by up to 60%
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Role of Unsteady Flow

Doorly, 1988
J. Turbomachinery

Park et al., 2014
ASME ሶ𝒒
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Wakes from upstream rotor stages in turbomachines increase time-averaged laminar heat 

transfer by up to 60%
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Role of Unsteady Flow

Doorly, 1988
J. Turbomachinery

Park et al., 2014
ASME ሶ𝒒Coherent unsteadiness within the cooling duct 

is a proxy of increased heat transfer potential.
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Research Questions

What are the key flow phenomena inside an enlarged 

cooling duct immersed in propeller wake? 

How significant is flow 

unsteadiness within the 

flowfield?

How is the above affected 

by design and mission 

profile sensitive variables? 

Coherent unsteadiness is 

a proxy for increased 

heat transfer rates 

Vary Advance Ratio, 

J=V∞/nDD, to capture 

changing flight condition
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Prop and Duct

In-house propeller design

• Fixed pitch 

• Designed for J=1.18 

(Climb Condition)

• Blockage of 14%

• Flat plate profile, 5% 

camber and 10% 

thickness

Downstream square duct

• Entirely transparent

• DD/RP ~ 40%

• Length ~ 41 DD

Advance Ratio, J = V∞/nDD

Controlled by varying 
rotational speed, n

DD

RP
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Prop and Duct

In-house propeller design

• Fixed pitch 

• Designed for J=1.18 

(Climb Condition)

• Blockage of 14%

• Flat plate profile, 5% 

camber and 10% 

thickness

Downstream square duct

• Entirely transparent

• DD/RP ~ 40%

• Length ~ 41 DD

Advance Ratio, J = V∞/nDD

Controlled by varying 
rotational speed, n

DD

RP

Inlets are sized based on the highest 
cooling requirements 

(i.e. takeoff and climb)
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Fixing the Prop and Duct

Propeller attached to rotor rig

• Top traverse to move field of view

• Driven by stepper motor via 

vertical pulley

• Biswas and Buxton (2024)

Duct held by low profile aluminum rig

• Inlet 1DD downstream of propeller 

• <2% blockage 

• No visible vibration

• Holds pipe 

Hydrodynamics 

Flume
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PIV Setup Single Phantom v641 Camera

• Cinematographic mode

• faq = 100Hz

• Perpendicular to duct wall 

Planar PIV Setup

• Sheet aligned with pipe midplane

• Water seeded with glass spheres
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PIV

Propeller in Isolation

Co-ordinate system aligned with 
propeller’s axis of rotation (x,z)

x

z
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Results - Characterising the Propeller in Isolation

The propeller produces a characteristic wake, as compared to literature by:

1. The formation of three discrete vortical structures that undergo expected magnitude changes 

and transition downstream with changing advance ratio. [Ahmed et. al (2020)]
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Summary
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Contraction

Progressive Pitching of Vortex Sheet 
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Results - Characterising the Propeller in Isolation

The propeller produces a characteristic wake, as compared to literature by:

2. An expected two-step energy transfer associated with evolution of coherent unsteadiness in 

three-bladed rotor wakes [Felli (2011), Biswas and Buxton (2024)]
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Summary
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Summary

Root 
Vortex

Tip Vortex

Vortex 
Sheet
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PIV

Duct aligned with Root

Co-ordinate system aligned with 
duct inlet (x’,z’)

x’

z’
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Results – Duct in Root Position
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Design Rotational Speed, J = 1.18

Streamwise Location, 𝒙′/𝑫𝑫 
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 < Τ𝝎𝒚𝑹𝑷 𝒖∞ >𝟑𝒇𝑷

< Τ𝒖 𝒖∞ >𝟑𝒇𝑷

< Τ𝒘 𝒖∞ >𝟑𝒇𝑷
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Results – Duct in Root Position
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Design Rotational Speed, J = 1.18

Streamwise Location, 𝒙′/𝑫𝑫 
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< Τ𝒘 𝒖∞ >𝟑𝒇𝑷

Ingestion of root vortex 
and portion of vortex sheet

Shear flow in the entrance 
region, ~20% reduction
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Results – Duct in Root Position
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Design Rotational Speed, J = 1.18

Streamwise Location, 𝒙′/𝑫𝑫 
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Ingestion of root vortex 
and portion of vortex sheet

Shear flow in the entrance 
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Results – Duct in Root Position
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High Rotational Speed, J = 0.78

Streamwise Location, 𝒙′/𝑫𝑫 
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Results – Duct in Root Position
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High Rotational Speed, J = 0.78

Streamwise Location, 𝒙′/𝑫𝑫 
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Shear flow in the entrance 
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Results – Duct in Root Position
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High Rotational Speed, J = 0.78

< Τ𝝎𝒚𝑹𝑷 𝒖∞ >𝟑𝒇𝑷

𝜶 = 𝟏 +
𝒖𝒊𝒏𝒅

𝒖∞

𝒖𝒊𝒏𝒅 =  Τ𝜞 𝟒𝝅𝜺

Where: 

• 𝜀 = distance from core to the wall

• 𝛤 = circulation of root vortex

Doligalski and Walker (1984)

Flow Reversal Predicted
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Results – Duct in Root Position
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High Rotational Speed, J = 0.78

𝒂 𝒘/𝒖∞

Blade Passing 
Frequency, 3fP

𝒇/𝒇𝑷
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Results – Duct in Root Position
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Changing Advance Ratio 
Design Rotational Speed, J=1.18

High Rotational Speed, J=0.78
Plot max 𝐚 𝐰,𝟑𝐟𝐏 at each 

streamwise location



Imperial College London

Results – Duct in Root Position
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Changing Advance Ratio 
Design Rotational Speed, J=1.18

High Rotational Speed, J=0.78
Values taken in the same 
location without the duct
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Summary of Findings
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The root vortex 
and vortex sheet 
enter the duct.

The root vortex dominates the mean 
flowfield and turbulence statistics

The root vortex undergoes vortex-
induced separation when at 

sufficient strength

Energies at 3fP are re-energized 
when this occurs and the locus 
moves to the centre of the duct

These decay into incoherent 
frequencies, rather than 2fP and 1fP 

when in isolation
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Varying Blockage

How does an internal blockage 

affect the development of the 

flowfield? 

• In reality, a cooling duct will have 

internal porous structures that 

obstruct the flow. 

 

 
𝟒𝑫𝑫

1 2 2B

35% area 
blockage

50% area blockage
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Effect on Entrance Flow

The flow ‘feels’ the upstream obstruction, increasing spillage over the inlet, reducing the streamwise 

velocity that passes into the duct. 

Mass flow rate drops within the duct by 12% and 24% for blockage 1 and 2.   
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Results – Duct in Root Position with Varying Blockage
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Effect on Merging
2

50%
1

35%

Blade wake pitch is reduced (roughly 20% in x) due to a reduced streamwise velocity as 
internal blockage increases
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Results – Duct in Root Position with Varying Blockage

12/06/2025T. Bryce-Smith, O.R.H. Buxton, G. Papadakis, K. Steiros 37

Effect on Merging
2

50%
1

35%

The reenergization of 3fP is now seen 
at the design advance ratio owing to 

the reduction of blade wake pitch
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Results – Duct in Root Position with Varying Blockage
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Effect on Merging
2

50%
2B

50%

Implication that this mechanism is 
sensitive to blockage type too
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Results – Advance Ratio vs Blockage
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Increasing Blockage
• Reduces blade wake pitch
• Has a more complex relationship for 

the magnitude of the shear flow

As in the case of increasing propeller 
rotational speed, a reenergisation of the 
blade passing frequency is observed

This process is also sensitive to internal blockage, via its effect on mass flow rate
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Novel hydrogen-electric architectures suffer from reduced 
cooling flux from lower temperature gradients in fuel cells.

Greater coolant mass flow rate leads to a larger drag area 
(CDA), harming range and endurance of these aircraft.

∆𝑇 ≈ 770℃ ∆𝑇 ≈ 70 − 170℃
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Novel hydrogen-electric architectures suffer from reduced 
cooling flux from lower temperature gradients in fuel cells.

Greater coolant mass flow rate leads to a larger drag area 
(CDA), harming range and endurance of these aircraft.

Flowfield unsteadiness induced by the propeller wake brings the potential to increase laminar heat flux within the duct, 
therefore a characterization of an enlarged duct immersed in propeller wake was performed.

Doorly, 1988
J. Turbomachinery

ሶ𝒒
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Novel hydrogen-electric architectures suffer from reduced 
cooling flux from lower temperature gradients in fuel cells.

Greater coolant mass flow rate leads to a larger drag area 
(CDA), harming range and endurance of these aircraft.

Flowfield unsteadiness induced by the propeller wake brings the potential to increase laminar heat flux within the duct, 
therefore a characterization of an enlarged duct immersed in propeller wake was performed.

A time-resolved PIV experiment was performed, using in-
house propeller design and an optically transparent duct.



Imperial College London

Conclusions

12/06/2025T. Bryce-Smith, O.R.H. Buxton, G. Papadakis, K. Steiros 43

Novel hydrogen-electric architectures suffer from reduced 
cooling flux from lower temperature gradients in fuel cells.

Greater coolant mass flow rate leads to a larger drag area 
(CDA), harming range and endurance of these aircraft.

Flowfield unsteadiness induced by the propeller wake brings the potential to increase laminar heat flux within the duct, 
therefore a characterization of an enlarged duct immersed in propeller wake was performed.

A time-resolved PIV experiment was performed, using in-
house propeller design and an optically transparent duct.

Advance ratio and internal blockage were two varied 
parameters to capture industrially relevant findings.
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Novel hydrogen-electric architectures suffer from reduced 
cooling flux from lower temperature gradients in fuel cells.

Greater coolant mass flow rate leads to a larger drag area 
(CDA), harming range and endurance of these aircraft.

Flowfield unsteadiness induced by the propeller wake brings the potential to increase laminar heat flux within the duct, 
therefore a characterization of an enlarged duct immersed in propeller wake was performed.

A time-resolved PIV experiment was performed, using in-
house propeller design and an optically transparent duct.

Advance ratio and internal blockage were two varied 
parameters to capture industrially relevant findings.

The duct ingests two discrete structures, the root vortex and the vortex sheet, and their associated energies make the blade 
passing frequency dominant within the entrance region of the duct.  



Imperial College London

Conclusions

12/06/2025T. Bryce-Smith, O.R.H. Buxton, G. Papadakis, K. Steiros 45

Novel hydrogen-electric architectures suffer from reduced 
cooling flux from lower temperature gradients in fuel cells.

Greater coolant mass flow rate leads to a larger drag area 
(CDA), harming range and endurance of these aircraft.

Flowfield unsteadiness induced by the propeller wake brings the potential to increase laminar heat flux within the duct, 
therefore a characterization of an enlarged duct immersed in propeller wake was performed.

A time-resolved PIV experiment was performed, using in-
house propeller design and an optically transparent duct.

Advance ratio and internal blockage were two varied 
parameters to capture industrially relevant findings.

The duct ingests two discrete structures, the root vortex and the vortex sheet, and their associated energies make the blade 
passing frequency dominant within the entrance region of the duct.  

These structures weaken as they pass 
through the duct, reducing the signature 

of the blade passing frequency

However, a reenergising mechanism is observed at the higher rotational speed 
and as blockage increases, from the merging of co-rotating vortical structures. 

From Decreasing Advance Ratio From Increasing Internal Blockage



Imperial College London

Conclusions

12/06/2025T. Bryce-Smith, O.R.H. Buxton, G. Papadakis, K. Steiros 46

Novel hydrogen-electric architectures suffer from reduced 
cooling flux from lower temperature gradients in fuel cells.

Greater coolant mass flow rate leads to a larger drag area 
(CDA), harming range and endurance of these aircraft.

Flowfield unsteadiness induced by the propeller wake brings the potential to increase laminar heat flux within the duct, 
therefore a characterization of an enlarged duct immersed in propeller wake was performed.

A time-resolved PIV experiment was performed, using in-
house propeller design and an optically transparent duct.

Advance ratio and internal blockage were two varied 
parameters to capture industrially relevant findings.

The duct ingests two discrete structures, the root vortex and the vortex sheet, and their associated energies make the blade 
passing frequency dominant within the entrance region of the duct.  

These structures weaken as they pass 
through the pipe, reducing the signature 

of the blade passing frequency

However, a reenergising mechanism is observed at the higher rotational speed 
and as blockage increases, from the merging of co-rotating vortical structures. 

This mechanism, with a deeper understanding of its activation, could enable increased cooling flux within hydrogen-electric 
powertrains, leading to a reduced flow rate requirement and subsequently, reduced CDA.
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Novel hydrogen-electric architectures suffer from reduced 
cooling flux from lower temperature gradients in fuel cells.

Greater coolant mass flow rate leads to a larger drag area 
(CDA), harming range and endurance of these aircraft.

Flowfield unsteadiness induced by the propeller wake brings the potential to increase laminar heat flux within the duct, 
therefore a characterization of an enlarged duct immersed in propeller wake was performed.

A time-resolved PIV experiment was performed, using in-
house propeller design and an optically transparent duct.

Advance ratio and internal blockage were two varied 
parameters to capture industrially relevant findings.

The duct ingests two discrete structures, the root vortex and the vortex sheet, and their associated energies make the blade 
passing frequency dominant within the entrance region of the duct.  

These structures weaken as they pass 
through the pipe, reducing the signature 

of the blade passing frequency

However, a reenergising mechanism is observed at the higher rotational speed 
and as blockage increases, from the merging of co-rotating vortical structures. 

This mechanism, with a deeper understanding of its activation, could enable increased cooling flux within hydrogen-electric 
powertrains, leading to a reduced flow rate requirement and subsequently, reduced CDA.
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