IMPERIAL

Propeller Wake Propagation within a Model Cooling Duct of a Hydrogen-Electric Aircraft

T. Bryce-Smith, O.R.H. Buxton, G. Papadakis, K. Steiros

1. Assumption based on growth projections from ATAG, IATA, ICCT, WWF, UN 2. ICAO ambition incl. efficiency improvements in aircraft technology, operations and infrastructure

Source: H₂ELIOS, 2023

Background Motivation

Hydrogen-based propulsion is here to stay in sustainable aviation

Thermal Management and Aerodynamic Structures for these aircraft require further study

"Thermal management will be a **key challenge for fuel cells.** The placement of this system has a **drag impact,** and the **weight of the system reduces the overall power density** of the fuel cell solution."

FlyZero – Technology Roadmaps Report, ATI 2022

Background The Challenge of Cooling Fuel Cells

The Challenge of Cooling Fuel Cells

$$\dot{q} = h \cdot \Delta T$$

$$\Delta T \approx 770^{\circ}C$$

$$T_{wax} \approx 800^{\circ}C$$

$$T_{wax} \approx 800^{\circ}C$$

$$T_{wax} \approx 800^{\circ}C$$

$$T_{wax} \approx 800^{\circ}C$$

$$T_{wax} \approx 100 - 200^{\circ}C$$

The Challenge of Cooling Fuel Cells

 $\Delta T \approx 770^{\circ}$ C

$$\dot{q} = h \cdot \Delta T$$

 $\Delta T \approx 70 - 170^{\circ} \mathrm{C}$

More cooling air is required to cool a Fuel Cell, owing to reduced temperature gradients

PW100: Conventional Turboprop Engine

ZeroAvia's Proposed Aviation Fuel Cell

Imperial College London

Source: *Pratt & Whitney*

Cooling in Hydrogen-Electric Aircraft

Universal Hydrogen's Fuel Cell Testbed

Cooling in Hydrogen-Electric Aircraft

12/06/2025

Background Research Questions

What are the key flow phenomena inside an enlarged cooling duct immersed in propeller wake?

Background Role of Unsteady Flow

Wakes from upstream rotor stages in turbomachines increase time-averaged laminar heat transfer by up to 60%

Doorly, 1988

Background Role of Unsteady Flow

Park et al., 2

ASME

Wakes from upstream rotor stages in turbomachines increase time-averaged laminar heat transfer by up to 60%

Doorly, 1988 *J. Turbomachinery*

Coherent unsteadiness within the cooling duct is a **proxy** of **increased heat transfer** potential.

Background Research Questions

What are the key flow phenomena inside an enlarged cooling duct immersed in propeller wake?

How significant is flow unsteadiness within the flowfield? Coherent unsteadiness is
 a proxy for increased heat transfer rates

How is the above affected by design and mission – profile sensitive variables? Vary Advance Ratio, J=V∞/nD_D, to capture changing flight condition

Methodology Prop and Duct

 R_{P}

In-house propeller design

- Fixed pitch
- Designed for J=1.18
 - (Climb Condition)
 - **Blockage of 14%**
- Flat plate profile, 5% camber and 10% thickness

Advance Ratio, J = V_∞/nD_D Controlled by varying rotational speed, n

General		
Test Section Area:	600 x 600	mm
Propeller Radius, <i>R</i> _{<i>P</i>} :	127	mm
Propeller Chord:	10 - 20	mm
Duct Hydraulic Diameter, D _D :	44	mm
Duct Length, <i>L</i> _D :	1830	mm
Freestream Velocity, u_{∞} :	0.20	ms^{-1}
Chord Reynolds Number, Rec:	7000	
Duct Reynolds Number, Re _D :	8400	

Downstream square duct

- Entirely transparent
- $D_D/R_P \sim 40\%$

 D_D

• Length ~ 41 D_D

Methodology Prop and Duct

 R_{P}

In-house propeller design

- Fixed pitch
- Designed for J=1.18
 - (Climb Condition)
 - **Blockage of 14%**
- Flat plate profile, 5% camber and 10% thickness

Advance Ratio, J = V_∞/nD_D Controlled by varying rotational speed, n

Inlets are sized based on the highest cooling requirements (i.e. takeoff and climb)

General		
Test Section Area:	600 x 600	mm
Propeller Radius, R _P :	127	mm
Propeller Chord:	10 - 20	mm
Duct Hydraulic Diameter, D _D :	44	mm
Duct Length, <i>L</i> _D :	1830	mm
Freestream Velocity, u_{∞} :	0.20	ms^{-1}
Chord Reynolds Number, Rec:	7000	
Duct Reynolds Number, <i>Rep</i> :	8400	

Downstream square duct

- Entirely transparent
- D_D/R_P ~ 40%

 D_D

• Length ~ 41 D_D

Methodology Fixing the Prop and Duct

Propeller attached to rotor rig

- Top traverse to move field of view
- Driven by stepper motor via vertical pulley
- Biswas and Buxton (2024)

Duct held by low profile aluminum rig

- Inlet 1D_D downstream of propeller
- <2% blockage</p>
- No visible vibration
- Holds pipe

<u>Hydrodynamics</u> <u>Flume</u>

Methodology PIV Setup

Single Phantom v641 Camera

- Cinematographic mode
- $f_{aq} = 100Hz$
- Perpendicular to duct wall

Planar PIV Setup

- Sheet aligned with pipe midplane
- Water seeded with glass spheres

PIV	
Seeding:	Water seeded with $9-12\mu m$ hol-
	low glass spheres
Laser:	Nd:YLF, 527nm wavelength
Camera:	1x Phantom v641, Nikon AF
	NIKKOR 50mm f/1.4D
Capture:	Cinematographic mode, 100Hz
	acquisition frequency
Analysis:	Multi-pass, Final pass: $32 \text{ px} \times 32$
	px, 50% Overlap
Spatial Resolution:	2.3mm

Methodology PIV

Results - Characterising the Propeller in Isolation Summary

The propeller produces a characteristic wake, as compared to literature by:

1. The formation of **three discrete vortical structures** that undergo expected magnitude changes and transition downstream with changing advance ratio. [Ahmed et. al (2020)]

Results - Characterising the Propeller in Isolation Summary

Imperial College London

The propeller produces a characteristic wake, as compared to literature by:

2. An expected **two-step energy transfer** associated with evolution of coherent unsteadiness in three-bladed rotor wakes [Felli (2011), Biswas and Buxton (2024)]

Results - Characterising the Propeller in Isolation Summary

The propeller produces a characteristic wake, as compared to literature by:

- 1. The formation of **three discrete vortical structures** that undergo expected magnitude changes and transition downstream with changing advance ratio. [Ahmed et. al (2020)]
- 2. An expected **two-step energy transfer** associated with evolution of coherent unsteadiness in three-bladed rotor wakes [Felli (2011), Biswas and Buxton (2024)]

Design Rotational Speed, J = 1.18

Design Rotational Speed, J = 1.18

Design Rotational Speed, J = 1.18

High Rotational Speed, J = 0.78

High Rotational Speed, J = 0.78

High Rotational Speed, J = 0.78

Doligalski and Walker (1984)
$$lpha=1+rac{u_{ind}}{u_{\infty}}$$
 $u_{ind}=\Gamma/4\pi arepsilon$

Where:

- *ε* = distance from core to the wall
- Γ = circulation of root vortex

Imperial College London T. Bryce-Smith, O.R.H. Buxton, G. Papadakis, K. Steiros

High Rotational Speed, J = 0.78

Changing Advance Ratio

Changing Advance Ratio

Summary of Findings

References

- 1) Aerospace Technology Institute. (n.d.). FlyZero. [online] Available at: https://www.ati.org.uk/flyzero/.
- 2) h2elios.eu. (n.d.). Home | H2ELIOS. [online] Available at: https://h2elios.eu/home.
- 3) ZeroAvia (2025). ZeroAvia. [online] ZeroAvia. Available at: https://zeroavia.com/.
- 4) Pratt and Whitney. (2024). PW100/150 Engines. [online] Available at: https://www.prattwhitney.com/en/products/regional-aviation-engines/pw100-150.
- 5) Park, J.S., Jung, E.Y., Lee, D.H., Kim, K.M., Kim, B.S., Chang, B.M. and Cho, H. hee (2014). Effects of Unsteady Wake on Heat Transfer of Endwall Surface in Linear Cascade. Journal of Heat Transfer, [online] 136(6). doi:https://doi.org/10.1115/1.4026373.
- 6) Doorly, D.J. (1988). Modeling the Unsteady Flow in a Turbine Rotor Passage. Journal of Turbomachinery, 110(1), pp.27–37. doi:https://doi.org/10.1115/1.3262164.
- 7) FELLI, M., CAMUSSI, R. and DI FELICE, F. (2011). Mechanisms of evolution of the propeller wake in the transition and far fields. Journal of Fluid Mechanics, [online] 682, pp.5–53. doi:https://doi.org/10.1017/jfm.2011.150.
- 8) Doligalski, T.L. and Walker, J.D.A. (1984). The boundary layer induced by a convected two-dimensional vortex. Journal of Fluid Mechanics, 139, pp.1–28. doi:https://doi.org/10.1017/s0022112084000240.
- 9) Bryce-Smith, T., Buxton, O.R.H., Papadakis, G. and Steiros, K. (2025). Propeller-induced unsteady flow inside a model cooling duct of a hydrogen-electric aircraft. In: 59th 3AF International Conference on Applied Aerodynamics.

Appendices

Methodology Varying Blockage

How does an internal blockage affect the development of the flowfield?

• In reality, a cooling duct will have internal porous structures that obstruct the flow.

Methodology Effect on Entrance Flow

The flow 'feels' the upstream obstruction, **increasing spillage** over the inlet, reducing the streamwise velocity that passes into the duct.

Mass flow rate drops within the duct by 12% and 24% for blockage 1 and 2.

Imperial College London

Results - Duct in Root Position with Varying Blockage

Results - Duct in Root Position with Varying Blockage

Results - Duct in Root Position with Varying Blockage

12/06/2025

Results - Advance Ratio vs Blockage

Increasing Blockage

- Reduces blade wake pitch
- Has a more complex relationship for the magnitude of the shear flow

As in the case of increasing propeller rotational speed, a **reenergisation of the blade passing frequency is observed**

This process is also sensitive to internal blockage, via its effect on mass flow rate

Novel hydrogen-electric architectures suffer from **reduced cooling flux** from **lower temperature gradients** in fuel cells.

 $\Delta T \approx 70 - 170^{\circ} \mathrm{C}$ $\Delta T \approx 770^{\circ} \mathrm{C}$

Greater coolant mass flow rate leads to a **larger drag area** (C_DA) , **harming range and endurance** of these aircraft.

Novel hydrogen-electric architectures suffer from reduced	Greater coolant mass flow rate leads to a larger drag area
cooling flux from lower temperature gradients in fuel cells.	(C _D A), harming range and endurance of these aircraft.

Flowfield unsteadiness induced by the propeller wake brings the potential to **increase laminar heat flux** within the duct, therefore a **characterization** of an **enlarged duct immersed in propeller wake** was performed.

Novel hydrogen-electric architectures suffer from **reduced cooling flux** from **lower temperature gradients** in fuel cells.

Greater coolant mas (C_DA) , **harming ran**

Flowfield unsteadiness induced by the propeller wake brings the potential to **incre** therefore a **characterization** of an **enlarged duct immersed in prop**

A **time-resolved PIV** experiment was performed, using inhouse propeller design and an optically transparent duct.

Novel hydrogen-electric architectures suffer from reduced	Greater coolant mass flow rate leads to a larger drag area
cooling flux from lower temperature gradients in fuel cells.	(C _D A), harming range and endurance of these aircraft.

Flowfield unsteadiness induced by the propeller wake brings the potential to **increase laminar heat flux** within the duct, therefore a **characterization** of an **enlarged duct immersed in propeller wake** was performed.

A **time-resolved PIV** experiment was performed, using inhouse propeller design and an optically transparent duct.

Advance ratio and internal blockage were two varied parameters to capture industrially relevant findings.

passing frequency dominant within the entrance region of the duct.

12/06/2025

The duct **ingests two discrete structures**, the root vortex and the vortex sheet, and their associated energies make the **blade passing frequency dominant** within the entrance region of the duct.

These **structures weaken as they pass through the duct**, reducing the signature of the blade passing frequency

However, a **reenergising mechanism** is observed at the higher rotational speed and as blockage increases, from the **merging of co-rotating vortical structures**.

The duct **ingests two discrete structures**, the root vortex and the vortex sheet, and their associated energies make the **blade passing frequency dominant** within the entrance region of the duct.

of the blade passing frequency

This mechanism, with a deeper understanding of its activation, could enable **increased cooling flux** within hydrogen-electric powertrains, leading to a **reduced flow rate requirement** and subsequently, **reduced C_DA**.

Novel hydrogen-electric architectures suffer from reduced	Greater coolant mass flow rate leads to a larger drag area
cooling flux from lower temperature gradients in fuel cells.	(C _D A), harming range and endurance of these aircraft.

Flowfield unsteadiness induced by the propeller wake brings the potential to **increase laminar heat flux** within the duct, therefore a **characterization** of an **enlarged duct immersed in propeller wake** was performed.

A time-resolved PIV experiment was performed, using in-	Advance ratio and internal blockage were two varied
house propeller design and an optically transparent duct.	parameters to capture industrially relevant findings.

The duct **ingests two discrete structures**, the root vortex and the vortex sheet, and their associated energies make the **blade passing frequency dominant** within the entrance region of the duct.

of the blade passing frequency and as blockage increases, from the merging of co-rotating vortical structures.	These structures weaken as they pass through the pipe , reducing the signature of the blade passing frequency	However, a reenergising mechanism is observed at the higher rotational speed and as blockage increases, from the merging of co-rotating vortical structures .
---	---	--

This mechanism, with a deeper understanding of its activation, could enable **increased cooling flux** within hydrogen-electric powertrains, leading to a **reduced flow rate requirement** and subsequently, **reduced C_DA**.

IMPERIAL

Propeller-induced Unsteady Flow Inside a Model Cooling Duct of a Hydrogen-Electric Aircraft

T. Bryce-Smith, O.R.H. Buxton, G. Papadakis, K. Steiros

Appendices

49

Imperial College London

T. Bryce-Smith, O.R.H. Buxton, G. Papadakis, K. Steiros

12/06/2025

Figure 12: Mean velocity and Reynolds stress A profiles for each blockage element (1 (35%), 2 (50%), 2B (50%, holed), and 3 (65%)).

Imperial College London

