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Background

10.6 m~ Cargo

ATI, 2022. Design of a novel propeller regional aircraft. ‘ ZeroAvia. Retrofit of current regional aircraft. \
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The Challenge of Cooling Fuel Cells
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Background
The Challenge of Cooling Fuel Cells

g =h-AT

AT =~ 770°C AT = 70 —170°C

PW100: Conventional ZeroAvia’s Proposed
Turboprop Engine Aviation Fuel Cell
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Background
The Challenge of Cooling Fuel Cells

g =h-AT
AT = 770°C

AT = 70 —170°C

> More cooling air is required to cool a Fuel Cell,
= owing to reduced temperature gradients ,,
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PW100: Conventional ZeroAvia’s Proposed
Turboprop Engine Aviation Fuel Cell
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Background
Cooling in Hydrogen-Electric Aircraft

Conventional . Fuel Cell
Turboprop Nacelle, ‘, .= -\ Nacelle

Universal Hydrogen’s
Fuel Cell Testbed
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Background
Cooling in Hydrogen-Electric Aircraft

Conventional Fuel Cell
Turboprop Nacelle ~290% in frontal area \ Nacelle

Increase

N\
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Background
Research Questions

~ / g

What are the key flow phenorﬁena inside an enlarged
cooling duct immersed in propeller wake?

- ——
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Background
Role of Unsteady Flow

Wakes from upstream rotor stages in turbomachines increase time-averaged laminar heat
transfer by up to 60%

Doorly, 1988
J. Turbomachinery

Park et al., 2014

ASME lcycle = 0.013 s (77.2 Hz)
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Background
Role of Unsteady Flow

Coherent unsteadiness within the cooling duct

is a proxy of increased heat transfer potential.
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Background
Research Questions

What are the key flow phenomena inside an enlarged
cooling duct immersed in propeller wake?

How significant is flow Coherent unsteadiness is
unsteadiness within the === 3 proxy for increased
flowfield? heat transfer rates
How is the above affected Vary Advance Ratio,

by design and missSion w==p J=Voo/nD,, to capture
profile sensitive variables? changing flight condition
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In-house propeller design Advance Ratio, J = V_/nD,,
* Fixed pitch Controlled by varying

- Designed for J=1.18 rotational speed, n
(Climb Condition) '
Blockage of 14%

Flat plate profile, 5%
camber and 10%
thickness

Methodology
Prop and Duct

IDownstream square duct

General

¢ Entlrely tra nspa I'ellt Test Section Area: 600 x 600 mm
Propeller Radius, Rp: 127 mm
-~ 0, s

¢ DD/ Rp 40 /0 Propeller Chord: 10-20 mm
Duct Hydraulic Diameter, Dp: 44  mm

o —~ ]
Le“gth &1 DD Duct Length, Lp: 1830 mm
Freestream Velocity, ..: 0.20 ms™!
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In-house propeller design
* Fixed pitch

* Designed for J=1.18
(Climb Condition)
Blockage of 14%

Flat plate profile, 5%
camber and 10%
thickness

Methodology
Prop and Duct

IDownstream square duct
* Entirely transparent

* Dp/Rp~40%
 Length~41D,
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Advance Ratio,J=V_/nD,

Controlled by varying
rotational speed, n

Inlets are sized based on the highest

cooling requirements
(i.e. takeoff and climb)

N

General

Test Section Area:

Propeller Radius, Rp:
Propeller Chord:

Duct Hydraulic Diameter, Dp:
Duct Length, 1.p:

Freestream Velocity, ..:
Chord Reynolds Number, Re,:
Duct Reynolds Number, Ren:

600x 600 mm

127 mm

10-20 mm

44  mm

1830 mm

0.20 ms™!
7000
8400



Hydrodynamics
Flume

Methodology
Fixing the Prop and Duct

Propeller attached to rotor rig

« Top traverse to move field of view

* Driven by stepper motor via
vertical pulley

 Biswas and Buxton (2024)

Duct held by low profile aluminum rig
* Inlet 1D, downstream of propeller
« <2% blockage

* Novisible vibration

 Holds pipe
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Methodology
PIV Setup

Imperial College London

Single Phantom v641 Camera

Cinematographic mode

f.q

=100Hz

Perpendicular to duct wall

Planar PIV Setup

« Sheet aligned with pipe midplane
 Water seeded with glass spheres

T. Bryce-Smith, O.R.H. Buxton, G. Papadakis, K. Steiros
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PIV

Seeding:

Laser:
Camera:

Capture:

Analysis:

Spatial Resolution:

Water seeded with 9-12um hol-
low glass spheres

Nd:YLF, 527nm wavelength

Ix Phantom v641, Nikon AF
NIKKOR 50mm {/1.4D
Cinematographic mode, 100Hz
acquisition frequency

Multi-pass, Final pass: 32 px x 32
px, 50% Overlap

2.3mm



Methodology
PIV

Propeller in Isolation
Co-ordinate system aligned with
propeller’s axis of rotation (x,z)
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Results - Characterising the Propeller in Isolation
Summary

The propeller produces a characteristic wake, as compared to literature by:

1.  The formation of three discrete vortical structures that undergo expected magnitude changes
and transition downstream with changing advance ratio. [Ahmed et. al (2020)]
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Results - Characterising the Propeller in Isolation
Summary
The propeller produces a characteristic wake, as compared to literature by:

2. An expected two-step energy transfer associated with evolution of coherent unsteadiness in
three-bladed rotor wakes [Felli (2011), Biswas and Buxton (2024)]
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Results - Characterising the Propeller in Isolation
Summary

The propeller produces a characteristic wake, as compared to literature by:

1.  The formation of three discrete vortical structures that undergo expected magnitude changes
and transition downstream with changing advance ratio. [Ahmed et. al (2020)]

2. Anexpected two-step energy transfer associated with evolution of coherent unsteadinessin
three-bladed rotor wakes [Felli (2011), Biswas and Buxton (2024)]
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Duct aligned with Root
Co-ordinate system aligned with
duct inlet (x’.z’)
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Transverse Location,z' /D

Results - Duct in Root Position _ — ————————————————————
Design Rotational Speed, J =1.18 i
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Transverse Location,z' /D,

Results - Duct in Root Position
Design Rotational Speed, J =1.18

Ingestion of root vortex
and portion of vortex sheet
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Results - Duct in Root Position
Design Rotational Speed. J =1.18

ROOT VORTEX

VORTEX SHEET

DOWNSTREAM

ROOT VORTEX
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Transverse Location,z' /D

Results - Duct in Root Position
High Rotational Speed, J = 0.78

Imperial College London

Streamwise Location, x' /D

< W/Uyp >3,
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Transverse Location,z' /D

Results - Duct in Root Position
High Rotational Speed, J = 0.78

»

Shear flow in the entrance

region, ~40% reduction ,

|- : 1 - ’ '|. |

Imperial College London
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Streamwise Location, x' /D

< W/Uyp >3,
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Results - Duct in Root Position
High Rotational Speed, J = 0.78

Root Vortex

Formation of counter-

rotating vorticity

¥ /Dp

‘ 4
0.45
0 1

Vortex Sheet

z' /IpRoot vortex pushed into
region of co-rotating
vorticity from sheet
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Results - Duct in Root Position

High Rotational Speed, J =0.78

Imperial College London

Blade Passing
Frequency, 3f,

0
0
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Results - Duct in Root Position
Changing Advance Ratio

Design Rotational Speed, J=1.18

High Rotational Speed, J=0.78

0.14 Plot max |a|,, 3¢p at each |
streamwise location —Duct, J = 1.18

= Duct, J = 0.78

0 3 6 9 12
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Results - Duct in Root Position
Changing Advance Ratio

Values taken in the same
location without the duct

Design Rotational Speed, J=1.18

High Rotational Speed, J=0.78

0.14 |
==Duct, J = 1.18
—Duct, J = 0.78
- "*.,. ===:No Duct, J = 1.18
S HENE| p—
5 § No Duct, J = 0.78
0 | |
0 3 6 9
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Summary of Findings

The root vortex dominates the mean These decay into incoherent
frequencies, rather than 2fP and 1fP

flowfield and turbulence statistics e :
when in isolation

The root vortex
and vortex sheet The root vortex undergoes vortex- Energies at 3fP are re-energized
enter the duct. induced separation when at when this occurs and the locus
sufficient strength moves to the centre of the duct

Formation of counter-|
rotating vorticity —r
g . 3 g —————
a =
A _....,D T R -
- o (
3 1 5 6 B = _
) 4 H] e 10 12 14 16

z'/PRoot vortex pushed into ( 9
region of co-rotating =
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Methodology
Varying Blockage

How does an internal blockage

affect the development of the

flowfield?

* Inreality, a cooling duct will have
internal porous structures that
obstruct the flow.
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Methodology
Effect on Entrance Flow

The flow ‘feels’ the upstream obstruction, increasing spillage over the inlet, reducing the streamwise
velocity that passes into the duct.

Mass flow rate drops within the duct by 12% and 24% for blockage 1 and 2.
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Results - Duct in Root Position with Varying Blockage

Effect on Merging — 3 ) >
—% 35% g 50% —
-0.5 , 0.5 |
| l I 05 : ' 1 E

0
(.5
0 1 2 £ 0 1 2 3
Blade wake pitch is reduced (roughly 20% in x) due to a reduced streamwise velocity as
internal blockage increases

— e
-0.5 nY -0.5 3 .
0F 0
0.5 l ' W 05 e
0 1 2 3 0 1 2 3
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Results - Duct in Root Position with Varying Blockage

Effect on Merging — 3 ) ,
= =i
05 . 0.5 |
‘{‘ Or .
0.5 l ' ' 0.5 1 . e

0 1 2 3 0 1 2 3
-0.95
0 [
0.5
0 1 2 3
-0.95 -0.5 r | The reenergization of 3f; is now seen
| at the design advance ratio owing to
OF Or the reduction of blade wake pitch
0.5 | | ' 0.5 ' ' |
0 1 2 3 0 1 2 3
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Results - Duct in Root Position with Varying Blockage

Effect on Merging
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sensitive to blockage type too
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Results - Advance Ratio vs Blockage

Increasing Blockage

* Reduces blade wake pitch

« Has a more complex relationship for
the magnitude of the shear flow

As in the case of increasing propeller
rotational speed, a reenergisation of the
blade passing frequency is observed

This process is also sensitive to internal blockage, via its effect on mass flow rate
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Conclusions

Novel hydrogen-electric architectures suffer from reduced Greater coolant mass flow rate leads to a larger drag area
cooling flux from lower temperature gradients in fuel cells. (CpA), harming range and endurance of these aircraft.

N

AT = 770°C AT = 70 —170°C

_
_ .
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Conclusions

Novel hydrogen-electric architectures suffer from reduced Greater coolant mass flow rate leads to a larger drag area
cooling flux from lower temperature gradients in fuel cells. (CpA), harming range and endurance of these aircraft.

Flowfield unsteadiness induced by the propeller wake brings the potential to increase laminar heat flux within the duct,
therefore a characterization of an enlarged duct immersed in propeller wake was performed.

Doorly, 1988
J. Turbomachinery
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Conclusions

Novel hydrogen-electric architectures suffer from reduced Greater coolant mas
cooling flux from lower temperature gradients in fuel cells. (CpA), harming ran

Flowfield unsteadiness induced by the propeller wake brings the potential to incre
therefore a characterization of an enlarged duct immersed in prop

A time-resolved PIV experiment was performed, using in-
house propeller design and an optically transparent duct.
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Conclusions

Novel hydrogen-electric architectures suffer from reduced Greater coolant mass flow rate leads to a larger drag area
cooling flux from lower temperature gradients in fuel cells. (CpA), harming range and endurance of these aircraft.

Flowfield unsteadiness induced by the propeller wake brings the potential to increase laminar heat flux within the duct,
therefore a characterization of an enlarged duct immersed in propeller wake was performed.

A time-resolved PIV experiment was performed, using in- Advance ratio and internal blockage were two varied
house propeller design and an optically transparent duct. parameters to capture industrially relevant findings.
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Conclusions

>

ROOT VORTEX

VORTEX SHEET

DOWNSTREAM
ROOT VORTEX

The duct ingests two discrete structures, the root vortex and the vortex sheet, and their associated energies make the blade
passing frequency dominant within the entrance region of the duct.

Imperial College London T. Bryce-Smith, O.R.H. Buxton, G. Papadakis, K. Steiros
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Conclusions

From Decreasing Advance Ratio From Increasing Internal Blockage

The duct ingests two discrete structures, the root vortex and the vortex sheet, and their associated energies make the blade
passing frequency dominant within the entrance region of the duct.

These structures weaken as they pass
through the duct, reducing the signature
of the blade passing frequency

However, a reenergising mechanism is observed at the higher rotational speed
and as blockage increases, from the merging of co-rotating vortical structures.
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Conclusions

0.14
==Duct, J = 1.18
= Duct, J = 0.78
HE
\
0 I
0 3 6 9 12

:l?/DD

The duct ingests two discrete structures, the root vortex and the vortex sheet, and their associated energies make the blade
passing frequency dominant within the entrance region of the duct.

These structures weaken as they pass
through the pipe, reducing the signature
of the blade passing frequency

However, a reenergising mechanism is observed at the higher rotational speed
and as blockage increases, from the merging of co-rotating vortical structures.

This mechanism, with a deeper understanding of its activation, could enable increased cooling flux within hydrogen-electric
powertrains, leading to a reduced flow rate requirement and subsequently, reduced C,A.
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Conclusions

Novel hydrogen-electric architectures suffer from reduced Greater coolant mass flow rate leads to a larger drag area
cooling flux from lower temperature gradients in fuel cells. (CpA), harming range and endurance of these aircraft.

Flowfield unsteadiness induced by the propeller wake brings the potential to increase laminar heat flux within the duct,
therefore a characterization of an enlarged duct immersed in propeller wake was performed.

A time-resolved PIV experiment was performed, using in- Advance ratio and internal blockage were two varied
house propeller design and an optically transparent duct. parameters to capture industrially relevant findings.

The duct ingests two discrete structures, the root vortex and the vortex sheet, and their associated energies make the blade
passing frequency dominant within the entrance region of the duct.
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through the pipe, reducing the signature
of the blade passing frequency
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Appendix
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Appendix

Figure 12: Mean velocity and Reynolds stressA profiles
for each blockage element (1 (35%), 2 (50%), 2B (50%,
holed), and 3 (65%)).
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Appendix
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