

Aerodynamic Modelling of a Tiltrotor during transition between Vertical Take-Off and Landing (VTOL) and aircraft mode

Anchal Goel CEng (Part time Phd Student) Supervisors : Dr Davide Di Pasquale and Dr Mushfiqul Alam

10th June 2025

www.cranfield.ac.uk

Context

- VTOL configurations offers combined benefits of helicopter and aircraft for Military and Civil applications.
- Tiltrotor configuration includes added transition phase in addition to hover phase from helicopter mode and cruise phase from airplane mode
- Transition phase in flight operation is unpredictable and required improved understanding of aerodynamics

Overall Aim and Objectives

<u>Aim</u>

Create numerical understanding of the unpredictable aerodynamic nature for a tiltrotor aircraft during unsteady transition phase for safer and reliable flight operation

Objectives

- Use of vortex panel method via Flightstream software to create an efficient and reliable method to predict performance and aero-acoustic parameters for isolated XV-15 VTOL rotor during hover, transition and cruise phase.
- Extending the analysis to understand the interaction of rotor flow field with the rest of aircraft to predict transition protocols for flight handling qualities
- Implement the methodology to conduct a mid-fidelity analysis on a conventional VTOL configuration (6000-6500 hp) and an e-VTOL configuration.

Principle factors that determine the performance of V/STOL

<u>Hover</u>

- Downward Velocity (Helicopter Vs VTOL)
- Power Required (Directly proportional to downward velocity)
- Fuel Consumption depends on power
- Downward dynamic pressure depends on slipstream disk area

<u>Cruise</u>

- Aerodynamic cleanliness to reduce the parasite power and a wing span to reduce the induced power
- VTOL power required > conventional aircraft

Transition (hover to cruise)

- Power requirement should not exceed power required in hovering
- Consideration : Minimum speed and STOL performance
- Power required curve in transition for low and high speed points of transition

General steps of Vortex Panel Method

Flightstream Results

- Cruise (vs CFD and Experimental)
- Hover (vs CFD, DUST and Experimental
- Transition at 30 (vs Experimental)
- Transition at 60 (vs Experimental)

Results for Isolated XV-15 Rotor – Cruise

Parameters	Cruise						
Pitch Angles	24,25,26,27,28	2.5 × 10 ⁻³	CT vs	CQ Cruise is	olated		
RPM	460.2		Exp CFD		0.01		•
Tip speed	183.77 m/s	2 -	lightstream - Pitch an	gies [24,25,26,27	,28]		
V(KTAS)	120 knots					6	
V(m/s)	61.73 m/s	1.5 -		,	-ST		
Resultant Velocity	195.1	ğ					
Density	1.153	1 -	E				
Assumed altitude	609 m	0.5 -					
Temperature	284.35 K	•	/				
Speed of sound	338 m/s	0	1	1	I		
Pressure	94188 Pa	0	1 2	3 CT	4	5	6 ×10 ⁻³

[1] Anon, "Advancement of Proprotor Technology Task 2 - Wind-Tunnel Test Results," Nasa Cr 114363, 1971

[2] Jia, F., Moore, J., and Wang, Q., "Assessment of Detached Eddy Simulation and Sliding Mesh

[3] Interface in predicting Tiltrotor Performance in Helicopter and Airplane Modes," AIAA AVIATION 2021 FORUM, American Institute of Aeronautics and Astronautics, AIAA 2021-2601.

Results for Isolated XV-15 Rotor – Hover

Parameters	Hover		0.7				
Pitch Angles	0,3,5,10,13	1.4 × 10 ⁻³	Larris 2017 [Evp Eit]	CQ Hover I	solated		
RPM	589	1.2	Jia 2022 [Flow360] Zanotti 2021 [DUST]				
Tip speed	235 m/s		Flightstream - pitch a	ngles[0,3,5,10	,13]		
V(KTAS)	0 knots					1	
V(m/s)	0 m/s	0.8 - Ø					
Resultant Velocity	235 m/s	0.6					
Density	1.225 kg/m3	0.4 -					
Assumed altitude	0 m						
Temperature	288.17 K	0.2					
Speed of sound	340.29m/s		.002 0.004	0.006	0.008	0.01	0.012
Pressure	101324 Pa			СТ			

[1] Anon, "Advancement of Proprotor Technology Task 2 - Wind-Tunnel Test Results," Nasa Cr 114363, 1971.

[2] Harris, F., "Robust prediction of high lift using surface vorticity," Hover Performance of Isolated Proprotors and Propellers-Experimental Data; Technical Report CR—2017–219486, 2017.
[3] Zanotti, A., Savino, A., Palazzi, M., Tugnoli, M., and Vincenzo Muscarell, "Assessment of a Mid-Fidelity Numerical Approach for the Investigation of Tiltrotor Aerodynamics," Applied Sciences, 2011

Results for Isolated XV-15 Rotor – Transition at 30

Parameters	Transition at 30	
Pitch Angles	15,16,17,18,19	1.8 × 10 ⁻³ CT vs CQ transition at 30° isolated
RPM	535.2	Exp - Run 9 1.6 - ■ - Flightstream CDi off- pitch angles[15,16,17,18,19]
Tip speed	213.42 m/s	1.4 -
V(KTAS)	100 knots	1.2 -
V(m/s)	51.4 m/s	g 1-
Resultant Velocity	219.52 m/s	
Density	1.1826 kg/m3	
Assumed altitude	365.8 m	
Temperature	285.77 K	
Speed of sound	338.19 m/s	0.2 1 2 3 4 5 6 CT
Pressure	97008 Pa	

8

[1] Anon, "Advancement of Proprotor Technology Task 2 - Wind-Tunnel Test Results," Nasa Cr 114363, 1971.

Results for Isolated XV-15 Rotor – Transition at 60

Parameters	Transition at 60	
Pitch Angles	10,11,12,13	10 ×10 ⁻⁴ CT vs CQ transition at 60° isolated
RPM	565.2	9 -
Tip speed	225.5 m/s	
V(KTAS)	140 knots	
V(m/s)	72.022 m/s	g ⁷
Resultant Velocity	236.72 m/s	6
Density	1.1549 kg/m3	5 -
Assumed altitude	609.6 m	4 - 4
Temperature	284.19 K	
Speed of sound	337.9 m/s	3 1.5 2 2.5 3 3.5 4 4.5 5 5.5 CT
Pressure	94213 Pa	

[1] Anon, "Advancement of Proprotor Technology Task 2 - Wind-Tunnel Test Results," Nasa Cr 114363, 1971.

Ongoing Work

- Ongoing Matlab code using blade element theory to predict cruise and hover isolated propeller cases.
- Full aircraft simulation on flightstream currently working on XV15 full aircraft mesh.
- Calculate uncertainty error bars from experimental results.

