

High Density Tunnel

University of Oxford Oxford Thermofluids Institute

UNIVERSITY OF

OXFORD

Dr Matthew McGilvray Dept. of Eng. Science matthew.mcgilvray @eng.ox.ac.uk

Mr Chris Hambidge Dr Luke Doherty Dept. of Eng. Science chris.hambidge @eng.ox.ac.uk

Dept. of Eng. Science luke.doherty @eng.ox.ac.uk

Facility

Transpiration Cooling

- Active cooling technology ulletfor cooling of hypersonic vehicle hot spots
- Heat flux, surface concentration and boundary layer transition measurements undertaken over a wide range of hypersonic Mach numbers

x mm

Large scale roughness

HDT performance compared to the theoretical performance of other UK hypersonic facilities HDT ready to fire with a conical test article

Configuration	Mach	P ₀ [bar]	Т ₀ [K]	Test Time [ms]
Ludwieg Mode	3 – 7	250	300 - 550	100 x 5
LICH Mode (Light Isentropic Compression Heating)	5 – 7	75	400 - 1500	100
ELM / PALM (Extended / Plenum Augmented Ludwieg Mode)	3 – 7	200	300 - 550	600

- Ablative TPS produces large scale roughness that can extend significantly beyond the laminar sublayer and sonic line.
- Distributed 2D and 3D \bullet roughness surfaces were developed and manufactured for a flat plate test
- Mach 5 boundary layer edge conditions, $Re = 30x10^6$
- Novel heat flux measurements using IR thermography, silver calorimeters and TFHTG High response shear stress measurements were successfully made using a floating element technique.

Free-flight aerodynamics

Free-flight technique allows for higher response, removal of sting and exploration of dynamic coupling Model drop co-ordinated to align \bullet with tunnel flow startup.

Industrial & Academic Partners

Forces measured through high speed imaging and on-board IMU

• Free-flight shown to out-Yaw Tracking perform traditional force Catcher Rings balance Foam Padding measurement technique. -LED Lighting

Mirror