

NATIONAL WIND TUNNEL FACILITY

Low Density Tunnel University of Oxford, Oxford

Dr Luke J Doherty Dept. of Eng. Science luke.doherty@eng.ox.ac.uk

Prof Peter Ireland Dept. of Eng. Science peter.ireland@eng.ox.ac.uk

Current Capability

Reynolds Number

Above: The LDT facility as installed at the Oxford Thermofluids Institute.

- Continuous, free-jet, open circuit facility. Operates in the hypersonic rarefied slip and transition regimes. Free-molecular flow conditions can be achieved with careful experiment design.
- Knudsen numbers up to ~ 0.2 for 10 15 mm model.
- Currently uses a Mach 6 contoured nozzle; exit diameter 108 mm. Other nozzles to be developed.

Mach Number

Above: Theoretical performance map of LDT for a reference length of 10 mm. Calculated assuming isentropic expansion of a thermally perfect gas with fixed core flow diameter of 50 mm. Nozzle supply pressures in the range 1 kPa to 20 kPa and supply temperatures in the range 300 K to 2000 K were considered, subject to facility mass flow requirements. Current capability at Mach 6 corresponds to nozzle supply pressures between 1 kPa and 4 kPa and nozzle supply temperatures between 300 K and 550 K.

- Maximum inlet mass flow ~0.6 g/s. Any inert gas may be used; typically operate with dry air.
- Total temperature capability currently up to 500 K. Can be increased to 1100 – 1350 K with improved inline heaters or to >3000 K with an Inductively Coupled Plasma (ICP) source.

Recent Research – Heat Transfer on Satellite Geometry Analogues

- Non-uniform spatial distribution of heat transfer is measured using thermochromic liquid crystal (LX) thermography.
- Paint is a mixture with LX transition bands of 30°C, 35°C and 40°C (typ.).
- Camera footage processed via. in-house and COMSOL-based techniques don't need to assume semi-infinite 1D conduction.
- Advantages of technique over discrete gauges or similar techniques such as infrared thermography include:
- Standard video cameras can be used at relatively low cost \rightarrow enables multiple high resolution views 2. Ability to be used with transparent substrates \rightarrow enables characterisation of surfaces otherwise unobservable Recently upgraded cameras to 2 x Ximea MC031MG-SY with resolution 3.1 Mpix (2064 x 1544) at 122 fps.

Heat Transfer Coefficient (W/m²K) 30 10 20 40 50

Left: Comparison of DSMC calculation of heat transfer coefficient with experimental result for a flat faced cylinder at Kn = 0.1 and 45° angle-ofattack. Flow from left-to-right.

Left: Raw camera image of hollow cylinder at Kn = 0.02, Mach = 5.4 at 45° angle-of-attack. Model diameter was 15mm with aspect and diameter ratios of 0.5. Recorded at a resolution of 1000 x 1000 at 80 fps. Flow from *left-to-right*.

280 300 320 340 360 390 80 20 40 60

Above: Experimental results for upper-stage analogue at Kn = 0.02 at angleof-attack of 60°. Model diameter was 15 mm. HTC in W/m²K, Temp. in K.

Industrial & Academic Partners

Science and Technology **Facilities Council**