

NATIONAL WIND TUNNEL FACILITY

Low-Turbulence Tunnel

City, University of London

Stability of Boundary Layers over Uniform and Non-uniform Surfaces

- Understanding and predicting the amplification and breakdown of TSwaves due to surface non-uniformity
- Establishing criteria for surface quality for skin friction drag reduction by delaying transition
- New wing designs aim at reducing drag (i.e. fuel consumption) by promoting natural laminar flow
 The flow is dominated by crossflow vortices We study these vortices and track their growth

Deterministic Turbulence (with U. Nottingham)

- Unlike "ordinary" turbulence, the deterministic turbulence method allows prediction of exact time and location of turbulence events that take place in the flow – only possible to study in very low turbulence facilities
- This is used to investigate & control transitional boundary layers for drag reduction by modifying turbulent spots
 Opposition-control strategy employed was a combination of out-ofphase v-velocity control with in-phase u-velocity control
- The effectiveness of opposition control in cancelling the high-speed region of the turbulent spots was demonstrated

Gaster Low-Turbulence Tunnel

- Test Section Dimensions: 0.9m X 0.9m X 3m
- Maximum Velocity: 30m/s
- Freestream Turbulence Intensity: 0.007 %
- Instrumentation: Thermal Anemometry, Pressure & Acoustic Transducers

Industrial & Academic Partners

Innovate UK

Technology Strategy Board

Engineering and Physical Sciences Research Council

